Meander dynamics: A nonlinear model without curvature restrictions for flow in open‐channel bends
نویسندگان
چکیده
[1] Despite the rapid evolution of computational power, simulation of meander dynamics by means of reduced and computationally less expensive models remains practically relevant for investigation of large‐scale and long‐term processes, probabilistic predictions, or rapid assessments. Existing meander models are invariantly based on the assumptions of mild curvature and slow curvature variations and fail to explain processes in the high‐curvature range. This article proposes a nonlinear model for meander hydrodynamics without curvature restrictions. It provides the distribution of the main flow, the magnitude of the secondary flow, the direction of the bed shear stress, and the curvature‐induced additional energy losses. It encompasses existing mild curvature models, remains valid for straight flow, and agrees satisfactorily with experimental data from laboratory experiments under conditions that are more demanding than sharp natural river bends. The proposed model reveals the mechanisms that drive the velocity redistribution in meander bends and their dependence on the river’s roughness Cf, the flow depth H, the radius of curvature R, the width B, and bathymetric variations. It identifies Cf H/R as the major control parameter for meander hydrodynamics in general and the relative curvature R/B for sharp curvature effects. Both parameters are small in mildly curved bends but O(1) in sharply curved bends, resulting in significant differences in the flow dynamics. Streamwise curvature variations are negligible in mildly curved bends, but they are the major mechanisms for velocity redistribution in sharp bends. Nonlinear feedback between the main and secondary flow also plays a dominant role in sharp bends: it increases energy losses and reduces the secondary flow, the transverse bed slope, and the velocity redistribution.
منابع مشابه
شبیهسازی الگوی جریان با یک مدل عددی دوبعدی در بازهای از پیچانرود طبیعی؛ مطالعه موردی رودخانه خشکه رود فارسان، استان چهارمحال و بختیاری
The present paper tries to describe the advantage and improvement of a numerical model when predicting government processes on Flow Rivers. With regard to the important effect of the flow velocity and shear stress forces on river bank erosion, we apply a Two-Dimensional numerical model, named CCHE2D, to simulate river flow pattern at a meandering river Khoshk-e-Rud River of Farsan, 30 Km west o...
متن کاملRiver meandering dynamics.
The Ikeda, Parker, and Sawai river meandering model is reexamined using a physical approach employing an explicit equation of motion. For periodic river shapes as seen from above, a cross-stream surface elevation gradient creates a velocity shear that is responsible for the decay of small-wavelength meander bends, whereas secondary currents in the plane perpendicular to the downstream direction...
متن کاملSaturation of curvature-induced secondary flow, energy losses, and turbulence in sharp open-channel bends: Laboratory experiments, analysis, and modeling
[1] The paper investigates the influence of relative bend curvature on secondary flow, energy losses, and turbulence in sharp open-channel bends. These processes are important in natural streams with respect to sediment transport, the bathymetry and planimetry, mixing and spreading of pollutants, heat, oxygen, nutrients and biological species, and the conveyance capacity. Laboratory experiments...
متن کاملAssessment of Turbulent Models in Computation of Strongly Curved Open Channel Flows
Several rigorous turbulent models have been developed in the past years and it can be seen that more research is needed to reach a better understanding of their generality and precision by verifying their applications for distinct hydraulic phenomena; under certain assumptions. This survey evaluates the performance of Standard k-ε, Realizable k-ε, RNG k-ε, k-ω and RSM models in predicting flow ...
متن کاملLaminar Flow Analysis in the Channel Bends
In this paper the laminar flow in the rectangular channel bends is simulated using numerical techniques. The turning angle of the channel bend and the area ratio of the channel cross-section are two important parameters to be examined. For flow simulation, the body fitted 3-D continuity and momentum equations are used and a body fitted general purpose code is developed. The existing results of ...
متن کامل